Moment Spaces of Minimal Dimension*

B. L. Granoviky
Department of Mathematics, Technion, Israel Institute of Technology, Haifa 32000, Israel
Communicated by Allan Pinkus

Received March 14, 1985; revised June 14, 1985

The objective of the present paper is to extend in several directions the result of [1]. For a given n, let F_{n} be the real linear space spanned by n linearly independent real valued bounded functions $f_{i}, i=1, \ldots, n$, defined on some set X. Denote by $F_{n} \cdot F_{n}$ the real linear space spanned by the products $f_{i} f_{i}, i, j=1, \ldots, n$. In the theory of design of experiments, the functions f_{i} are called regression functions. They induce a moment matrix (information matrix)

$$
M(\zeta)=\left\{m_{i j}(\zeta)\right\}_{i, j=1}^{n}, \quad m_{i j}(\zeta)=\int_{X} f_{i}(x) f_{j}(x) \zeta(d x)
$$

where ζ is a given probability measure on X, called a design.
If for a given ζ, we treat $M(\zeta)$ as a point with coordinates $m_{i j}(\zeta), i \leqslant j$, $i, j=1, \ldots, n$ in $n(n+1) / 2$, dimensional Eucledian space, then the set of all $M(\zeta)$, as ζ traverses the set Ξ of all probability measures, coincides with the moment space, say $\mathscr{M}_{n},[2]$, generated by the functions $f_{i} f_{j}, i, j=1, \ldots, n$. The dimension of \mathscr{M}_{n} is important for problems connected with the number of points of concentration of ζ. For example, it can be easily shown that if $\operatorname{dim} \mathscr{A}_{n}=s$, then for any given ζ there exists a design $\bar{\zeta}$ such that $M(\tilde{\zeta})=M(\zeta)$ and $\tilde{\zeta}$ has no more than $s+1$ points of support. Since Ξ includes measures concentrated at one point of the set X, it is obvious that $\operatorname{dim} \mathscr{M}_{n}=\operatorname{dim}\left(F_{n} \cdot F_{n}\right)$. Thus we are naturally led to the problem of characterizing the linear spaces F_{n} which, for a given n, generate a space $F_{n} \cdot F_{n}$ of minimal dimension. This question is closely connected with the old KieferWolfowitz problem of describing those regression functions f_{1}, \ldots, f_{n} for which there exists an optimal design concentrated at n points [2].

[^0]Our main result is contained in the following:
Theorem. In the above notation, let F_{n} be such that the linear space $F_{n} \cdot F_{n}$ has no zero divisor. Then $\operatorname{dim}\left(F_{n} \cdot F_{n}\right) \geqslant 2 n-1$, with equality only if there exists a basis of F_{n} formed by n functions of the form $\omega q^{i-1}, i=1, \ldots, n$, where the functions ω and q satisfy the following conditions:
(i) $\omega(x)$ is a bounded function, $|q(x)|<\infty$ for all $x \in X$, such that $\omega(x) \neq 0$, and it is possible that there exist points $x \in X$, at which $\omega(x)=0$ and $q(x)=\infty$. In the latter case the functions ω and q are defined in such a way that $\left(\omega q^{i-1}\right)(x)=0, i=1, \ldots, n-1$, and $\left(\omega q^{n-1}\right)(x) \neq 0$;
(ii) There exist $4 n-3$ distinct points $x_{j} \in X, j=1, \ldots, 4 n-3$ such that $q\left(x_{j}\right) \neq q\left(x_{i}\right), i \neq j, i, j=1, \ldots, 4 n-3$, and for at least $4 n-4$ of these points $\omega\left(x_{j}\right) \neq 0$. And conversely, if the space F_{n} is spanned by the functions of the above form then the linear space $F_{n} \cdot F_{n}$ has no zero divisor and $\operatorname{dim}\left(F_{n} \cdot F_{n}\right)=2 n-1$.

Proof. In what follows, by a polynomial in F_{n} (resp. in $F_{n} \cdot F_{n}$) we mean a linear combination of basis functions of F_{n} (resp. $F_{n} \cdot F_{n}$) and use the letters α, β to denote the coefficients of these polynomials. We agree also that the equality $f=g$ means, unless stated explicitly otherwise, that $f(x)=g(x)$, for all $x \in X$. We shall repeatedly exploit the assumption of the theorem that the space $F_{n} \cdot F_{n}$ has no zero divisor. This means that if $P Q=0$, for some functions $P \in F_{n} \cdot F_{n}, Q \in F_{n} \cdot F_{n}$, then at least one of the above two functions is equal to zero. Observe first that from this condition, it follows that the space F_{n} also has no zero divisor. In fact, let f, g be any two elements of F_{n}, such that $f g=0$. Then $f^{2} g^{2}=0$. But $f^{2}, g^{2} \in F_{n} \cdot F_{n}$, from which it follows that at least one of the functions f^{2}, g^{2} is a zero function. Consequently, the same is true for the functions f, g. For the sake of brevity we shall refer to this property of the spaces F_{n} and $F_{n} \cdot F_{n}$ as (${ }^{*}$).

Sufficiency. Let the functions $\omega q^{i-1}, i=1, \ldots, n$ constitute a basis of the space F_{n} and let $x_{j} \in X, j=1, \ldots, 4 n-3$ be the points at which the functions ω and q satisfy condition (ii) of the theorem. Consider first any $2 n-1$ of the above points, say $x_{1}, \ldots, x_{2 n-1}$, such that $\omega\left(x_{j}\right) \neq 0, j=1, \ldots, 2 n-1$. Observe that, according to condition (i) of the theorem, $\left|q\left(x_{j}\right)\right|<\infty, j=$ $1, \ldots, 2 n-1$. Then $\operatorname{det}\left\{\omega^{2}\left(x_{j}\right) q^{i-1}\left(x_{j}\right)\right\}_{i, j=1}^{2 n-1} \neq 0$, which implies that the functions $\omega^{2} q^{i-1}, i=1, \ldots, 2 n-1$, spanning the space $F_{n} \cdot F_{n}$ are linearly independent on X. Hence $\operatorname{dim}\left(F_{n} \cdot F_{n}\right)=2 n-1$ and it is easy to see that condition (i) of the theorem guarantees the boundness of all functions
belonging to F_{n}. Now it remains to show that conditions (i) and (ii) imply condition (*) for the space $F_{n} \cdot F_{n}$. Consider two polynomials:

$$
P=\omega^{2} \sum_{i=1}^{2 n-1} \alpha_{i} q^{i-1} \in F_{n} \cdot F_{n}
$$

and

$$
Q=\omega^{2} \sum_{i=1}^{2 n-1} \beta_{i} q^{i-1} \in F_{n} \cdot F_{n}
$$

such that $P Q=0$. Then $(P Q)\left(x_{j}\right)=0, j=1, \ldots, 4 n-3$, from which it follows that one of the polynomials, say P, has more than $2 n-2$ distinct zeros among the above points $x_{j}, j=1, \ldots, 4 n-3$. If all these zeros x_{j} of P are such that $\omega\left(x_{j}\right) \neq 0$, and, consequently, in view of condition (i), $\left|q\left(x_{j}\right)\right|<\infty$, then the condition $q\left(x_{i}\right) \neq q\left(x_{j}\right), i \neq j$ immediately implies that $P=0$. According to conditions (i) and (ii) of the theorem, it is possible that among the points $x_{j}, j=1, \ldots, 4 n-3$ there is only one point at which $|q|$ is infinite. If such a point is a zero of P, then condition (i) of the theorem implies that $x_{2 n-1}=0$. Hence, in this case P is a polynomial in q of degree $2 n-3$ having more than $2 n-3$ distinct zeros $q_{j}=q\left(x_{j}\right),\left|q_{j}\right|<\infty$. Consequently, again $P=0$. This establishes $\left(^{*}\right)$ and completes the proof of sufficiency.

Necessity. The idea of the proof is based on constructing a basis in F_{n} formed by fundamental Lagrange polynomials. Let $x_{j}, j=1, \ldots, n$ be any n distinct points in X chosen so that $\operatorname{det}\left\{f_{i}\left(x_{j}\right)\right\}_{i, j=1}^{n} \neq 0$. Such a choice is possible since the functions $f_{i}, i=1, \ldots, n$ are assumed to be linearly independent on X. This guarantees the existence of n fundamental Lagrange polynomials $p_{i} \in F_{n}, i=1, \ldots, n$ induced by the points x_{1}, \ldots, x_{n}, i.e., polynomials determined by the requirements

$$
\begin{equation*}
p_{i}\left(x_{j}\right)=\delta_{i j}, \quad i, j=1, \ldots, n . \tag{1}
\end{equation*}
$$

Obviously the functions $p_{i}, i=1, \ldots, n$ are linearly independent on X, so they form a basis of F_{n}. Thus the space $F_{n} \cdot F_{n}$ is spanned by the functions $p_{i} p_{j}$, $i, j=1, \ldots, n$. Consider now the following system of $2 n-1$ functions in $F_{n} \cdot F_{n}$:

$$
\begin{equation*}
p_{1} p_{j}, \quad j=2, \ldots, n ; \quad p_{i}^{2}, \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

From (1) we have

$$
\begin{equation*}
\left(p_{1} \sum_{j=2}^{n} \alpha_{j} p_{j}+\sum_{i=1}^{n} \beta_{i} p_{i}^{2}\right)\left(x_{l}\right)=\beta_{l}, \quad l=1, \ldots, n . \tag{3}
\end{equation*}
$$

(3) and condition (*) for the space F_{n} imply that the equation

$$
p_{1} \sum_{j=2}^{n} \alpha_{j} p_{j}+\sum_{i=1}^{n} \beta_{i} p_{i}^{2}=0
$$

holds only if $\alpha_{j}=0, j=2, \ldots, n ; \beta_{i}=0, i=1, \ldots, n$. This means that the functions (2) are linearly independent on X and shows that $\operatorname{dim}\left(F_{n} \cdot F_{n}\right) \geqslant$ $2 n-1$.

According to the necessary condition of the theorem, $\operatorname{dim}\left(F_{n} \cdot F_{n}\right)=$ $2 n-1$. Therefore the system of functions (2), forms a basis of $F_{n} \cdot F_{n}$. Consequently,

$$
\begin{equation*}
p_{k} p_{l}=p_{1} \sum_{i=2}^{n} \alpha_{i=}^{(k,)} p_{i}+\sum_{i=1}^{n} \beta_{i i}^{(k, l)} p_{i}^{2}, \quad k, l=1, \ldots, n . \tag{4}
\end{equation*}
$$

But according to (1), for any $k \neq l,\left(p_{k} p_{l}\right)\left(x_{j}\right)=0, j=1, \ldots, n$, which implies that in (4), $\beta_{i 1}^{(k, l)}=0, i=1, \ldots, n, k \neq l$. Thus we have

$$
\begin{equation*}
p_{k} p_{l}=p_{1} \sum_{i=2}^{n} \alpha_{i 1}^{(k)} p_{i}, \quad k \neq l, k, l=1, \ldots, n \tag{5}
\end{equation*}
$$

and similarly

$$
p_{k} p_{s}=p_{1} \sum_{i=2}^{n} \alpha_{11}^{(k . s)} p_{i}, \quad k \neq s, k, s=1, \ldots, n .
$$

By virtue of (${ }^{*}$) for the spaces $F_{n} \cdot F_{n}$ and F_{n} we obtain from the above two equalities that

$$
\begin{gathered}
p_{l} \sum_{i=2}^{n} x_{1}^{(k, s)} p_{i}-p_{s} \sum_{i=2}^{n} \alpha_{i 1}^{(k, l)} p_{i}=0, \\
s \neq k, \quad s \neq l, \quad k \neq l, \quad l, s, k=1, \ldots, n .
\end{gathered}
$$

Applying the last equality for $x=x_{s}$, gives

$$
\alpha_{s 1}^{(k, l)}=0, \quad s=2, \ldots, n, \quad s \neq k ; \quad s \neq l ; \quad k \neq l .
$$

Consequently, (5) takes the form

$$
p_{k} p_{l}=p_{1}\left(\alpha_{k 1}^{(k, l)} p_{k}+\alpha_{11}^{(k . l)} p_{l}\right), \quad k \neq l, k, l=1, \ldots, n .
$$

Changing p_{1} on p_{s} we finally obtain that the functions p_{i} must satisfy the following relationships:

$$
\begin{equation*}
p_{k} p_{l}=p_{s}\left(\alpha_{k s}^{(k, l)} p_{k}+\alpha_{l s}^{(k, l)} p_{l}\right), \quad k \neq l, k, l, s=1, \ldots, n . \tag{6}
\end{equation*}
$$

It is important to notice that in (6) $\alpha_{k, s}^{(k, l)} \neq 0, \alpha_{l s}^{(k, l)} \neq 0, s \neq k, l$, due to (*) for the space F_{n}. The relationship (6) will serve as the main tool for proving the necessity of the conditions of the theorem. Let one of the functions p_{i}, $i=1, \ldots, n$, say p_{s}, vanish at some point $x \in X$. Then we find from (6) that $\left(p_{k} p_{l}\right)(x)=0, k \neq l, k, l=1, \ldots, n$. This means that a zero of one of the above n functions p_{i} is necessarily a zero of all but at most one of the remaining functions p_{i}. Due to this fact, all the functions $p_{i} p_{j}, i \neq j, i, j=1, \ldots, n$, vanish at the same points $x \in X$. Thus the set $X_{1}=\left\{x \in X:\left(p_{i} p_{j}\right)(x)=0\right\}$ is the same for all $i \neq j, i, j=1, \ldots, n$, and, consequently, $X \backslash X_{1}=\{x \in X$: $\left.p_{i}(x) \neq 0, i=1, \ldots, n\right\}$. Now we find from (6) that

$$
\left(\alpha_{k s}^{(k / l)} p_{k}+\alpha_{l s}^{(k, l)} p_{l}\right)(x) \neq 0, \quad x \in X \backslash X_{1}, k \neq l, k, l, s=1, \ldots, n .
$$

(Observe that, by virtue of (${ }^{*}$) for the space $F_{n}, X_{1} \neq X$.)
Accordingly, (6) implies, for fixed $k, l, k \neq l$, that

$$
p_{s}(x)=\frac{p_{k} p_{l}}{x_{k s}^{(k, l)} p_{k}+\alpha_{l s}^{(k, l)} p_{t}}(x), \quad s=1, \ldots, n, x \in X \backslash X_{1}
$$

We have thus established that on the subset $X \backslash X_{1}$ the space F_{n} is spanned by the following n functions:

$$
\begin{equation*}
\frac{p_{1}}{\Delta_{s}}, \quad s=1, \ldots, n \tag{7}
\end{equation*}
$$

Here $\Delta_{s}=\alpha_{k s}^{(k, t)}+x_{l s}^{(k, 1)} q, \quad s=1, \ldots, n, q=p_{t} / p_{k}$, and for $x \in X \backslash X_{1}, \infty \neq$ $|q(x)| \neq 0, \Delta_{1}(x)=1, \Delta_{k}(x)=q(x), \Delta_{s}(x) \neq 0, s=1, \ldots, n$. Again applying $\left(^{*}\right)$ for the space F_{n}, we obtain from (6) that

$$
\frac{\alpha_{k i}^{(k, l)}}{\alpha_{k j}^{(k, l)}} \neq \frac{\alpha_{l i}^{(k, l)}}{\alpha_{l i}^{(k, l)}}, \quad i \neq j, i, j=1, \ldots, n, k \neq l .
$$

In view of this, together with the fact that $\alpha_{l s}^{(k, l)} \neq 0, s=1, \ldots, n, s \neq k$, we find that $\prod_{s=1}^{n} \Delta_{s}$ is a polynomial in q of degree $n-1$, having $n-1$ distinct zeros. This allows us to conclude that any fraction of the form $\left(\prod_{s=1}^{n} A_{s}\right)^{-1} q^{i-1}, i=1, \ldots, n$ is a linear combination of the n fractions Δ_{s}^{-1}, $s=1, \ldots, n$, and it is obvious that the converse assertion is also true. So we obtain from (7) that the functions $\omega q^{i-1}, i=i, \ldots, n$, where $\omega=$ $\left(\prod_{s=1}^{n} \Delta_{s}\right)^{-1} p_{l}$, span the space F_{n} on the subset $X \backslash X_{1}$. Summarizing the previous discussion, we find that the functions

$$
g_{i}(x)=\left\{\begin{array}{ll}
\left(\omega q^{i \cdot 1}\right)(x), & x \in X \backslash X_{1} \tag{8}\\
h_{i}(x), & x \in X_{1}
\end{array} \quad i=1, \ldots, n\right.
$$

where each function h_{1} is a linear combination of the functions p_{1}, \ldots, p_{n},
span the space F_{n}. Now consider $0 \neq P=p_{1} p_{2} \in F_{n} \cdot F_{n}$ and any $Q \in F_{n} \cdot F_{n}$, such that $Q(x)=0, x \in X \backslash X_{1}$. Then $P Q=0$, since $\left(p_{1} p_{2}\right)(x)=0, x \in X_{1}$. Thus the condition (${ }^{*}$) for the space $F_{n} \cdot F_{n}$ implies that $Q=0$. This means that $2 n-1$ basis functions (2) of the space $F_{n} \cdot F_{n}$ also constitute a basis of this space on the subset $X \backslash X_{1}$. But, according to (8), the space $F_{n} \cdot F_{n}$ on $X \backslash X_{1}$ is spanned by $2 n-1$ functions $\omega q^{i-1}, i=1, \ldots, 2 n-1$. Thus we deduce that the functions $\omega q^{i-1}, i=1, \ldots, 2 n-1$ are linearly independent on $X \backslash X_{1}$. Now we determine the form of the functions $h_{i}, i=1, \ldots, n$ in (8). From (8) we see that, for any fixed $s, 2 \leqslant s \leqslant 2 n$, the functions $g_{i} g_{j}, i, j=$ $1,2, \ldots, n, i+j=s$, coincide on the subset $X \backslash X_{1}:\left(g_{i} g_{j}\right)(x)=\left(\omega^{2} q^{s-2}\right)(x)$, $x \in X \backslash X_{1}$. Furthermore, the function $\omega^{2} q^{s-2}$ is not identically zero on $X \backslash X_{1}$, since it is one of the basis functions of the space $F_{n} \cdot F_{n}$ on this set. Hence, for any given $s, 2 \leqslant s \leqslant 2 n$, the functions $h_{i} h_{j}, i, j=i, \ldots, n, i+j=s$, must coincide on X_{1}, since otherwise at least two of the functions $g_{i} g_{j}$, $i, j=1, \ldots, n, i+j=s$, will be linearly independent on X, and, consequently, $\operatorname{dim}\left(F_{n} \cdot F_{n}\right)>2 n-1$. From the previously established relationships between the functions $h_{i} h_{j}$ it is easy to see that a zero of one of the n functions $h_{i}, i=1, \ldots, n$ is necessarily a zero of all other functions h_{i} with the possible exception of one of the two functions h_{1} and h_{n}. Thus, at the points $x \in X_{1}$ where $h_{1}(x) \neq 0$, the functions $h_{i}, i=1, \ldots, n$ are of the form stated in the theorem, with $\omega=h_{1}$ and $q=h_{2} / h_{1}$, and at all other points $x \in X_{1}$ (if such points exist) $h_{i}(x)=0, i=1, \ldots, n-1$. Now consider these latter points $x \in X_{1}$. We can define $\omega(x)=0, q(x)=0$, if $h_{n}(x)=0$. Otherwise the functions q and ω can be defined at the above points according to condition (i) of the theorem.

Thus we have proved the existence of a basis of the space F_{n} formed by functions of the form $\omega q^{i-1}, i=i, \ldots, n$. The necessity of the other part of condition (i) concerning the functions q and ω follows immediately from the assumed boundness of the functions $f_{i}, i=1, \ldots, n$, spanning F_{n}. Next we will show that condition (ii) of the theorem is a consequence of condition (*) for the space $F_{n} \cdot F_{n}$. We divide the set X into three disjoint subsets: $X_{01}=\{x \in X: \omega(x)=0,|q(x)| \neq \infty\}, X_{02}=\{x \in X: \omega(x)=0,|q(x)|=\infty\}$ and $X \backslash X_{0}=\{x \in X: \omega(x) \neq 0\}$, where $X_{0}=X_{01} \cup X_{02}$. Let the function q take only s distinct values, q_{1}, \ldots, q_{s}, on the set $X \backslash X_{0}$, where, according to condition (i), $\left|q_{i}\right|<\infty, i=1, \ldots, s$. Consider $P=\omega^{2} \prod_{i=1}^{[s / 2]}\left(q-q_{i}\right)$ and $Q=$ $\omega^{2} \prod_{i=[, v 2]+1}^{s}\left(q-q_{i}\right)$, where ω and q satisfy condition (i) of the theorem and [\cdot] denotes the integer part of a number. If the set X_{02} is empty then, for $s<4 n-3, P, Q \in F_{n} \cdot F_{n}$, and $P Q=0$. However, $P \neq 0$ and $Q \neq 0$ since $\omega(x) \neq 0, x \in X \backslash X_{0}$. In the case where the set X_{02} is not empty the same is true for $s<4 n-4$, since in this case the polynomial P is of degree less than $2 n-2$, so that due to (i) (*), $P(x)=0, x \in X_{02}$. Hence, in both cases condition (*) fails for the space $F_{n} \cdot F_{n}$. This completes the proof of the theorem.

Remarks. (i) Condition (*) cannot be eliminated. Let $X=Y_{1} \cup Y_{2}$, where $Y_{1} \cap Y_{2}=\varnothing$ and let f_{i} be a characteristic function of the set Y_{i}, $i=1,2$. Then $\operatorname{dim}\left(F_{2} \cdot F_{2}\right)=2<3$, since $f_{1} f_{2}=0$.
(ii) If condition (*) holds for F_{n} it does not necessarily hold for $F_{n} \cdot F_{n}$. For example, let X consist of $2 n-1$ distinct points $x_{j}, j=$ $1, \ldots, 2 n-1$ and $f_{i}(x)=x^{i \cdot 1}, \quad i=1, \ldots, n$. Then $\sum_{i=1}^{n} \alpha_{i} f_{i} \cdot \sum_{i=1}^{n} \beta_{i} f_{i}=0$ implies that one of the two polynomials on the left-hand side has more than $n-1$ distinct zeros, and consequently, it is zero. This means that in the considered case F_{n} has no zero divisor. On the other hand, $F_{n} \cdot F_{n}$ is spanned by the functions $x^{i}, i=1, \ldots, 2 n-1$. Thus, taking, e.g., $P=$ $\left(x-x_{1}\right) \cdots\left(x-x_{2 n-2}\right) \in F_{n} \cdot F_{n}$ and $Q=x-x_{2 n} \quad \in F_{n} \cdot F_{n}$ we see that $P Q=0$, while $P \neq 0, Q \neq 0$.
(iii) The theorem is valid also for the case when F_{n} is a linear space spanned by complex valued functions over a field of complex numbers.

3

The following corollary generalizing the result of [1] can be easily obtained from the theorem:

Corollary. In the above notation, let X contain at least $4 n-3$ distinct points. Then the space $F_{n} \cdot F_{n}$ is spanned by $2 n-1$ functions, forming a Chebyshev system of minimal degree $2 n-1$ on X if and only if there exists in F_{n} a basis formed by the functions of the form $\omega q^{i-1}, i=1, \ldots, n$, where q is such that $q(x) \neq q(y), x \neq y, x, y \in X$ and $\omega(x) \neq 0, x \in X$.

Proof. The sufficiency is obvious. For proving the necessity show first that under the assumptions of the corollary the space $F_{n} \cdot F_{n}$ satisfies condition (*). Fix in the space $F_{n} \cdot F_{n}$ a basis of $2 n-1$ functions forming a Chebyshev system of degree $2 n-1$, and let P, Q be any two polynomials in $F_{n} \cdot F_{n}$ (with respect to the above basis), such that $P Q=0$. Since the set X contains more than $4 n-4$ distinct points, one of the above two polynomials has more than $2 n-2$ distinct zeros, and, consequently, it equals zero, due to the assumed Chebyshev property of the basis functions of $F_{n} \cdot F_{n}$. Hence, all conditions of the theorem are fulfilled, which implies the existence in F_{n} a basis formed by the functions of the form $\omega q^{i-1}, i=$ $1, \ldots, n$. Due to the Chebyshev property of these functions, the functions ω and q must be as in the corollary.

In conclusion, we present two examples of linear spaces of functions F_{n}, generating a linear space $F_{n} \cdot F_{n}$ of minimal dimension.

Example 1. The system of rational functions. Let $f_{i}=\left(x-\alpha_{i}\right)^{1}, x \in$
$[a, b], \alpha_{i} \notin[a, b], i=1, \ldots, n$. Denote $\omega(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)^{-1}$. Then we find that F_{n} is spanned by the functions $\omega x^{i-1}, i=1, \ldots, n$.

Example 2. The system of trigonometric functions: 1, $\sin x$, $\cos x, \ldots, \sin m x, \cos m x, \quad x \in R, m$ is a fixed integer. Since $\sin k x=$ $\left(e^{i k x}+e^{-i k x}\right) / 2 i, \quad \cos k x=\left(e^{i k x}+e^{-i k x}\right) / 2, \quad k=1,2, \ldots, m$, we immediately obtain that in the case considered, $F_{n}, n=2 m+1$, is spanned by the functions $e^{-i k x}, k=-m,-m+1, \ldots, m$. See Remark (iii).

Acknowledgments

The work on this paper was stimulated by discussions with the late Professor E. G. Strauss and with Professor E. Passow.

References

1. B. L. Granovsky and E. Passow, Chebyshev systems of minimal degree, Slam J. Math. Anal. 15 (1984), 166-169.
2. S. Karlin and W. J. Studden, Tchebycheff systems: with applications in analysis and statistics, Interscience, New York, 1966.

[^0]: * This research was supported by the Technion V.P.R. Fund and the L. Edelstein Research Fund.

