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1

The objective of the present paper is to extend in several directions the
result of [1]. For a given n, let F" be the real linear space spanned by n
linearly independent real valued bounded functions f, i = 1,... , n, defined on
some set X. Denote by F" . Fn the real linear space spanned by the products
f .f;, i, j = 1, ... , n. In the theory of design of experiments, the functions f, are
called regression functions. They induce a moment matrix (information
matrix)

where ( is a given probability measure on X, called a design.
If for a given (, we treat M(O as a point with coordinates m/i((), i ~ j,

i, j = 1,... , n in n(n + 1)/2, dimensional Eucledian space, then the set of all
M( (), as ( traverses the set S of all probability measures, coincides with the
moment space, say J!t", [2], generated by the functions I f i , i, j = 1,..., n.
The dimension of cit" is important for problems connected with the number
of points of concentration of (. For example, it can be easily shown that if
dim jl" = s, then for any given ( there exists a design r such that
M(r) = M(O and r has no more than s + 1 points of support. Since S
includes measures concentrated at one point of the set X, it is obvious that
dim.A" = dim(F,,' Fn ). Thus we are naturally led to the problem of charac
terizing the linear spaces Fn which, for a given n, generate a space Fn ' F" of
minimal dimension. This question is closely connected with the old Kiefer-
Wolfowitz problem of describing those regression functions fl ,... , f;, for
which there exists an optimal design concentrated at n points [2].

* This research was supported by the Technion V.P.R. Fund and the L. Edelstein Research
Fund.
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Our main result is contained in the following:
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THEOREM. In the above notation, let Fn be such that the linear space
F,,· F" has no zero divisor. Then dim(Fn • Fn) ~ 2n - 1, with equality only if
there exists a basis of F,Jormed by n functions of the form wqi- 1, i = 1,..., n,
where the functions wand q satisfy the following conditions:

(i) w(x) is a bounded function, Iq(x)1 < 00 for all XEX, such that
w(x) # 0, and it is possible that there exist points x E X, at which w(x) = 0
and q(x) = 00. In the latter case the functions wand q are defined in such a
way that (wqi-I )(x) = 0, i = 1,..., n - 1, and (wq"-l )(x) # 0;

(ii) There exist 4n - 3 distinct points xi EX, j = 1,..., 4n - 3 such that
q(x) # q(x;), i # j, i, j = 1,..., 4n - 3, and for at least 4n - 4 of these points
w(x) # O. And conversely, if the space F" is spanned by the functions of the
above form then the linear space Fn· F" has no zero divisor and
dim(F,,· F,,) = 2n - 1.

Proof In what follows, by a polynomial in F" (resp. in F,,· Fn) we mean
a linear combination of basis functions of Fn (resp. Fn · F,,) and use the let
ters (1, f3 to denote the coefficients of these polynomials. We agree also that
the equality f = g means, unless stated explicitly otherwise, that
f(x) = g(x), for all x E X. We shall repeatedly exploit the assumption of the
theorem that the space F,,' F" has no zero divisor. This means that if
PQ = 0, for some functions P E F" . F", Q E Fn . Fn , then at least one of the
above two functions is equal to zero. Observe first that from this condition,
it follows that the space F" also has no zero divisor. In fact, let f, g be any
two elements of F,,, such that fg = o. Then f2g 2= O. But f2, g2 E F,,' Fn,
from which it follows that at least one of the functions .f2, g2 is a zero
function. Consequently, the same is true for the functions f, g. For the sake
of brevity we shall refer to this property of the spaces Fn and Fn . Fn as (*).

Sufficiency. Let the functions wqi- 1, i = 1,... , n constitute a basis of the
space F" and let Xi EX, j = 1,... , 4n - 3 be the points at which the functions
wand q satisfy condition (ii) of the theorem. Consider first any 2n - 1 of
the above points, say X 1 ' ...'X 2n - I' such that w(x) #0, j=1, ... ,2n-1.
Observe that, according to condition (i) of the theorem, Iq(xj )! < 00, j=
1, ... ,2n-1. Then det{w2(x)qil(x)}7.~::#0, which implies that the
functions W

2q i - I, i = 1,..., 2n - 1, spanning the space Fn · Fn are linearly
independent on X. Hence dim(F,,· Fn) = 2n - 1 and it is easy to see that
condition (i) of the theorem guarantees the boundness of all functions
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belonging to Fw Now it remains to show that conditions (i) and (ii) imply
condition (*) for the space Fn . Fw Consider two polynomials:

2n I

P=w 1 L iY.iqi 1 EFn ' Fn
i= 1

and

2n - 1

Q=w 1 L f34 -I E F
n

' F
n

i~ I

such that PQ = 0. Then (PQ)(xj ) = 0, j = I, ..., 4n - 3, from which it follows
that one of the polynomials, say P, has more than 2n - 2 distinct zeros
among the above points Xj' j = I, ... , 4n - 3. If all these zeros x j of P are such
that w(x) #- 0, and, consequently, in view of condition (i), Iq(xj)1 < c/o, then
the condition q(x,.) #- q(x), i #- j immediately implies that P = 0. According
to conditions (i) and (ii) of the theorem, it is possible that among the
points xi' j = 1,... , 4n - 3 there is only one point at which Iql is infinite. If
such a point is a zero of P, then condition (i) of the theorem implies that
iY. 2n I = 0. Hence, in this case P is a polynomial in q of degree 2n - 3
having more than 2n - 3 distinct zeros qi = q(.\), Iq) < 00. Consequently,
again P = 0. This establishes (*) and completes the proof of sufficiency.

Necessity. The idea of the proof is based on constructing a basis in Fn

formed by fundamental Lagrange polynomials. Let Xi' j = 1,... , n be any n
distinct points in X chosen so that det{f,.(xJ};~/~1#-0. Such a choice is
possible since the functions!" i = 1, ... , n are assumed to be linearly indepen
dent on X. This guarantees the existence of n fundamental Lagrange
polynomials piEF,l' i=I,...,n induced by the points X1, ...,Xn , i.e.,
polynomials determined by the requirements

i, j = 1,... , n. (1)

Obviously the functions Pi' i = 1,..., n are linearly independent on X, so they
form a basis of Fw Thus the space Fn . Fn is spanned by the functions Pi PI'
i, j = 1,..., n. Consider now the following system of 2n - 1 functions in
Fn ' Fn :

From (1) we have

PI Pi' j= 2, ..., n; p;, i = 1"'0' n. (2)

1= 1,... , n. (3)
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(3) and condition (*) for the space F" imply that the equation

n "

PI L iY.jPj+ L f3iP7=0
j~2 i=1
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holds only if iY.j = 0, j = 2,..., n; f3i = 0, i = 1,..., n. This means that the
functions (2) are linearly independent on X and shows that dim(Fn ' F") ~
2n-1.

According to the necessary condition of the theorem, dim(Fn ' Fn ) =
2n - 1. Therefore the system of functions (2), forms a basis of Fn ' Fn . Con
sequently,

n n

PkPI= PI L iY.j~J)Pi+ L f3j~'!)P7,
i~2 i~ I

k, 1= 1,... , n. (4)

But according to (1), for any k i=!, (PkPI)(Xj ) = 0, j= 1,... , n, which implies
that in (4), f3j~J) = 0, i = 1,... , n, k i=!. Thus we have

and similarly

"
Pk PI = PI L iY.~~J)Pi'

i = 2

"
Pk P, = PI L'Y.j~·')Pi'

i= 2

k =/-1, k, 1= 1, ... , n

k =/- s, k, s = 1, ... , n.

(5 )

By virtue of (*) for the spaces F" . F" and F" we obtain from the above two
equalities that

n n

PI L 'Y.)~·')Pi- P, L 'Y.j~,I)Pi=O,

s =/- k,

i= 2

s =/- I,

i= 2

k =/-1, I, s, k = 1, ... , n.

Applying the last equality for x = x" gives

'Y.~7J) = 0, S = 2, ... , n, s #- k;

Consequently, (5) takes the form

s #-1; k#-I.

k #-1, k, 1= 1,..., n.

Changing PIon Ps we finally obtain that the functions Pi must satisfy the
following relationships:

k #-1, k, I, S = 1,..., n. (6)
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It is important to notice that in (6) :Xk~'" 1= 0, :xj~.I1 1= 0, s 1= k, I, due to (*) for
the space F". The relationship (6) will serve as the main tool for proving
the necessity of the conditions of the theorem. Let one of the functions P"
i = 1, ... , n, say p" vanish at some point x E X. Then we find from (6) that
(Pk PI)(X) = 0, k 1= I, k, 1= 1,..., n. This means that a zero of one of the above
n functions P, is necessarily a zero of all but at most one of the remaining
functions p,. Due to this fact, all the functions P,P" il=j, i,j=I, ... ,n,
vanish at the same points XEX. Thus the set XI = (XEX: (P,P,)(X)=O} is
the same for all il=j, i,j=I, ...,n, and, consequently, X\X1={XEX:
p,(x) 1= 0, i = 1, ... , n}. Now we find from (6) that

XEX\X1, kl=l, k,l,s=I, ... ,n.

(Observe that, by virtue of (*) for the space F,n XI 1= X.)
Accordingly, (6) implies, for fixed k, I, k 1= I, that

s=l, ... ,n, XEX\X].

We have thus established that on the subset X\X I the space Fn is spanned
by the following n functions:

PI
,1" '

S= 1,... , n (7)

Here ,1,=:xi~JI+:x~~.I)q, s=I, ...,n, q=Pt/Pko and for XEX\X1, wl=
Iq(x)1 1=0, Ak,)= 1, Llk(x)=q(x), ,1Jx)I=O, s= 1,... , n. Again applying (*)
for the space Fn , we obtain from (6) that

i 1= j, i, j = 1,... , n, k 1= I.

In view of this, together with the fact that C(~~.I) 1= 0, s = 1,..., n, s 1= k, we find
that [1': ~ I ,1 s is a polynomial in q of degree n - 1, having n - 1 distinct
zeros. This allows us to conclude that any fraction of the form
([T' ~ I ,1 s) I q' - I, i = 1,... , n is a linear combination of the n fractions ,1 s- I,

S = 1,... , n, and it is obvious that the converse assertion is also true. So we
obtain from (7) that the functions wq' - I, i = i,..., n, where w =
(rl':~1 LIs) IPI' span the space Fn on the subset X\X]. Summarizing the
previous discussion, we find that the functions

(8)i= 1,... , n{
(Wq' I)(X),

g(x)=
I ~ h,(x), XEX1

where each function hi is a linear combination of the functions PI"'" Pn'
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span the space Fn. Now consider °#- P = PI pz E Fn' Fn and any Q E Fn' Fn,
such that Q(x)=O, XEX\X I . Then PQ=O, since (PIPZ)(X)=O, XEX I .

Thus the condition (*) for the space Fn ' Fn implies that Q = 0. This means
that 2n - I basis functions (2) of the space Fn ' Fn also constitute a basis of
this space on the subset X\ XI' But, according to (8), the space Fn . Fn on
X\ XI is spanned by 2n - I functions wqi - I, i = 1,..., 2n - 1. Thus we
deduce that the functions wqi -- I, i = 1,..., 2n - 1 are linearly independent on
X\X l • Now we determine the form of the functions hi, i = 1,... , n in (8).
From (8) we see that, for any fixed s, 2 ~ s ~ 2n, the functions gi gj' i, j =
1,2, ... ,n, i+j=s, coincide on the subset X\X I:(gigj)(X)=(WZqs--2)(X),
x E X\X I • Furthermore, the function w2qs - 2 is not identically zero on
X\X I , since it is one of the basis functions of the space Fn ' Fn on this set.
Hence, for any given s, 2 ~ s ~ 2n, the functions hihj , i, j = i, ..., n, i + j = s,
must coincide on X b since otherwise at least two of the functions gi gj'
i, j = 1,... , n, i + j = s, will be linearly independent on X, and, consequently,
dim(Fn -F,ll > 2n - 1. From the previously established relationships
between the functions hih j it is easy to see that a zero of one of the n
functions hi' i = 1,..., n is necessarily a zero of all other functions hi with the
possible exception of one of the two functions hI and hn . Thus, at the
points x E Xl where h I (x) #- 0, the functions hi, i = 1,..., n are of the form
stated in the theorem, with w = hI and q = hz/hI, and at all other points
x E XI (if such points exist) hi(x) = 0, i = 1,..., n- 1. Now consider these lat
ter points XEX I . We can define w(x)=O, q(x)=O, if hn(x)=O. Otherwise
the functions q and w can be defined at the above points according to con
dition (i) of the theorem.

Thus we have proved the existence of a basis of the space F n formed by
functions of the form wqi I, i = i, ..., n. The necessity of the other part of
condition (i) concerning the functions q and w follows immediately from
the assumed boundness of the functions ii' i = I, ..., n, spanning Fn . Next we
will show that condition (ii) of the theorem is a consequence of condition
(*) for the space Fn ' Fw We divide the set X into three disjoint subsets:
XOl={XEX: w(x)=O, Iq(x)l#-oo}, X02 ={XEX: w(x)=O, Iq(x)l=oo}
and X\Xo = {x E X: w(x) #- O}, where Xo= XOI U X 02 . Let the function q
take only s distinct values, ql ,..., qs' on the set X\Xo, where, according to
condition (i), Iqil < 00, i= 1,..., s. Consider P=w 2

nf;:i~] (q-qi) and Q=
(V

2
n~'= [s/2] + I (q - qll, where wand q satisfy condition (i) of the theorem

and [. ] denotes the integer part of a number. If the set X02 is empty then,
for s < 4n - 3, P, Q E Fn . Fn, and PQ = 0. However, P#-O and Q #-°since
w(x) #- 0, X E X\Xo. In the case where the set X02 is not empty the same is
true for s < 4n - 4, since in this case the polynomial P is of degree less than
2n-2, so that due to (i)(*), P(x)=O, XEX02 • Hence, in both cases con
dition (*) fails for the space Fn ' Fn . This completes the proof of the
theorem.
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Remarks. (i) Condition (*) cannot be eliminated. Let X= Yt U Y 2 ,

where Y1 n Y2 = 0 and let j; be a characteristic function of the set Y j ,

i = 1, 2. Then dim(F2 ' F2) = 2 < 3, since fl f2 = O.

(ii) If condition (*) holds for F" it does not necessarily hold for
F,,' F". For example, let X consist of 2n -1 distinct points XI' j=
1, ...,2n-l and t;(x)=x j

I, i=I, ... ,n. Then L;'~I(XJI'L;'~tf3Ji=O

implies that one of the two polynomials on the left-hand side has more
than n - 1 distinct zeros, and consequently, it is zero. This means that in
the considered case F" has no zero divisor. On the other hand, F,,' Fn is
spanned by the functions Xl I, i = I, ..., 2n - 1. Thus, taking, e.g., P =

(X-XI)"'(X-X2n_2)EFn'Fn and Q=x-x2n tEFn'Fn we see that
PQ = 0, while P =1= 0, Q =1= O.

(iii) The theorem is valid also for the case when Fn is a linear space
spanned by complex valued functions over a field of complex numbers.

3

The following corollary generalizing the result of [1] can be easily
obtained from the theorem:

COROLLARY. In the above notation, let X contain at least 4n - 3 distinct
points. Then the space F,,' F" is spanned by 2n - 1 functions, forming a
Chebyshev system of minimal degree 2n - 1 on X if and only if there exists in
Fn a basis formed by the functions of the f{Jrm wqi - t, i = 1,..., n, where q is
such that q(x) =1= q(y), X =1= y, x, Y E X and w(x) =1= 0, X E X.

Proal The sufficiency is obvious. For proving the necessity show first
that under the assumptions of the corollary the space Fn ' Fn satisfies con
dition (*). Fix in the space Fn · Fn a basis of 2n - 1 functions forming a
Chebyshev system of degree 2n - 1, and let P, Q be any two polynomials in
F il • F il (with respect to the above basis), such that PQ = O. Since the set X
contains more than 4n - 4 distinct points, one of the above two
polynomials has more than 2n - 2 distinct zeros, and, consequently, it
equals zero, due to the assumed Chebyshev property of the basis functions
of F il • Fil • Hence, all conditions of the theorem are fulfilled, which implies
the existence in Fn a basis formed by the functions of the form wqi I, i =

1, ... , n. Due to the Chebyshev property of these functions, the functions w
and q must be as in the corollary.

In conclusion, we present two examples of linear spaces of functions F n ,

generating a linear space Fn . F il of minimal dimension.

EXAMPLE 1. The system of rational functions. Let I = (X - (Xi) I X E
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[a, b], 1I-;f/= [a, b], i = 1,... , n. Denote w(x) = TI7~ 1(x - a;) -I. Then we find
that F

I1
is spanned by the functions wx i

- 1, i = 1,..., n.

EXAMPLE 2. The system of trigonometric functions: 1, sin x,
cos x, ... , Sill mx, cos mx, x ER, m is a fixed integer. Since sin kx =
(e ikx + e - ikx )/2i, cos kx = (e ikx + e - ikx )/2, k = 1, 2,..., m, we immediately
obtain that in the case considered, F I1 , n = 2m + 1, is spanned by the
functions e - ikx, k = -m, -m + 1,..., m. See Remark (iii).
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