Moment Spaces of Minimal Dimension*

B. L. GRANOVSKY

Department of Mathematics, Technion, Israel Institute of Technology, Haifa 32000, Israel

Communicated by Allan Pinkus

Received March 14, 1985; revised June 14, 1985

1

The objective of the present paper is to extend in several directions the result of [1]. For a given n, let F_n be the real linear space spanned by n linearly independent real valued bounded functions f_i , i = 1,..., n, defined on some set X. Denote by $F_n \cdot F_n$ the real linear space spanned by the products $f_i f_j$, i, j = 1,..., n. In the theory of design of experiments, the functions f_i are called regression functions. They induce a moment matrix (information matrix)

$$M(\zeta) = \{m_{ij}(\zeta)\}_{i,j=1}^{n}, \qquad m_{ij}(\zeta) = \int_{\chi} f_{i}(x) f_{j}(x) \zeta(dx)$$

where ζ is a given probability measure on X, called a design.

If for a given ζ , we treat $M(\zeta)$ as a point with coordinates $m_{ij}(\zeta)$, $i \leq j$, i, j = 1,..., n in n(n + 1)/2, dimensional Eucledian space, then the set of all $M(\zeta)$, as ζ traverses the set Ξ of all probability measures, coincides with the moment space, say \mathcal{M}_n , [2], generated by the functions $f_i f_j$, i, j = 1,..., n. The dimension of \mathcal{M}_n is important for problems connected with the number of points of concentration of ζ . For example, it can be easily shown that if dim $\mathcal{M}_n = s$, then for any given ζ there exists a design $\tilde{\zeta}$ such that $M(\tilde{\zeta}) = M(\zeta)$ and $\tilde{\zeta}$ has no more than s + 1 points of support. Since Ξ includes measures concentrated at one point of the set X, it is obvious that dim $\mathcal{M}_n = \dim(F_n \cdot F_n)$. Thus we are naturally led to the problem of characterizing the linear spaces F_n which, for a given n, generate a space $F_n \cdot F_n$ of minimal dimension. This question is closely connected with the old Kiefer-Wolfowitz problem of describing those regression functions $f_1,...,f_n$ for which there exists an optimal design concentrated at n points [2].

* This research was supported by the Technion V.P.R. Fund and the L. Edelstein Research Fund.

2

Our main result is contained in the following:

THEOREM. In the above notation, let F_n be such that the linear space $F_n \cdot F_n$ has no zero divisor. Then $\dim(F_n \cdot F_n) \ge 2n - 1$, with equality only if there exists a basis of F_n formed by n functions of the form ωq^{i-1} , i = 1, ..., n, where the functions ω and q satisfy the following conditions:

(i) $\omega(x)$ is a bounded function, $|q(x)| < \infty$ for all $x \in X$, such that $\omega(x) \neq 0$, and it is possible that there exist points $x \in X$, at which $\omega(x) = 0$ and $q(x) = \infty$. In the latter case the functions ω and q are defined in such a way that $(\omega q^{i-1})(x) = 0$, i = 1, ..., n-1, and $(\omega q^{n-1})(x) \neq 0$;

(ii) There exist 4n-3 distinct points $x_j \in X$, j = 1,..., 4n-3 such that $q(x_i) \neq q(x_i)$, $i \neq j$, i, j = 1,..., 4n-3, and for at least 4n-4 of these points $\omega(x_i) \neq 0$. And conversely, if the space F_n is spanned by the functions of the above form then the linear space $F_n \cdot F_n$ has no zero divisor and $\dim(F_n \cdot F_n) = 2n-1$.

Proof. In what follows, by a polynomial in F_n (resp. in $F_n \cdot F_n$) we mean a linear combination of basis functions of F_n (resp. $F_n \cdot F_n$) and use the letters α , β to denote the coefficients of these polynomials. We agree also that the equality f = g means, unless stated explicitly otherwise, that f(x) = g(x), for all $x \in X$. We shall repeatedly exploit the assumption of the theorem that the space $F_n \cdot F_n$ has no zero divisor. This means that if PQ = 0, for some functions $P \in F_n \cdot F_n$, $Q \in F_n \cdot F_n$, then at least one of the above two functions is equal to zero. Observe first that from this condition, it follows that the space F_n also has no zero divisor. In fact, let f, g be any two elements of F_n , such that fg = 0. Then $f^2g^2 = 0$. But f^2 , $g^2 \in F_n \cdot F_n$, from which it follows that at least one of the functions f^2 , g^2 is a zero function. Consequently, the same is true for the functions f, g. For the sake of brevity we shall refer to this property of the spaces F_n and $F_n \cdot F_n$ as (*).

Sufficiency. Let the functions ωq^{i-1} , i = 1,..., n constitute a basis of the space F_n and let $x_j \in X$, j = 1,..., 4n - 3 be the points at which the functions ω and q satisfy condition (ii) of the theorem. Consider first any 2n - 1 of the above points, say $x_1,..., x_{2n-1}$, such that $\omega(x_j) \neq 0$, j = 1,..., 2n - 1. Observe that, according to condition (i) of the theorem, $|q(x_j)| < \infty$, j = 1,..., 2n - 1. Then det $\{\omega^2(x_j) q^{i-1}(x_j)\}_{i,j=1}^{2n-1} \neq 0$, which implies that the functions $\omega^2 q^{i-1}$, i = 1,..., 2n - 1, spanning the space $F_n \cdot F_n$ are linearly independent on X. Hence dim $(F_n \cdot F_n) = 2n - 1$ and it is easy to see that condition (i) of the theorem guarantees the boundness of all functions

belonging to F_n . Now it remains to show that conditions (i) and (ii) imply condition (*) for the space $F_n \cdot F_n$. Consider two polynomials:

$$P = \omega^2 \sum_{i=1}^{2n-1} \alpha_i q^{i-1} \in F_n \cdot F_n$$

and

$$Q = \omega^2 \sum_{i=1}^{2n-1} \beta_i q^{i-1} \in F_n \cdot F_n$$

such that PQ = 0. Then $(PQ)(x_j) = 0$, j = 1,..., 4n - 3, from which it follows that one of the polynomials, say P, has more than 2n - 2 distinct zeros among the above points x_j , j = 1,..., 4n - 3. If all these zeros x_j of P are such that $\omega(x_j) \neq 0$, and, consequently, in view of condition (i), $|q(x_j)| < \infty$, then the condition $q(x_i) \neq q(x_j)$, $i \neq j$ immediately implies that P = 0. According to conditions (i) and (ii) of the theorem, it is possible that among the points x_j , j = 1,..., 4n - 3 there is only one point at which |q| is infinite. If such a point is a zero of P, then condition (i) of the theorem implies that $\alpha_{2n-1} = 0$. Hence, in this case P is a polynomial in q of degree 2n - 3having more than 2n - 3 distinct zeros $q_j = q(x_j)$, $|q_j| < \infty$. Consequently, again P = 0. This establishes (*) and completes the proof of sufficiency.

Necessity. The idea of the proof is based on constructing a basis in F_n formed by fundamental Lagrange polynomials. Let x_j , j = 1,...,n be any n distinct points in X chosen so that det $\{f_i(x_j)\}_{i,j=1}^n \neq 0$. Such a choice is possible since the functions f_i , i = 1,...,n are assumed to be linearly independent on X. This guarantees the existence of n fundamental Lagrange polynomials $p_i \in F_n$, i = 1,...,n induced by the points $x_1,...,x_n$, i.e., polynomials determined by the requirements

$$p_i(x_j) = \delta_{ij}, \qquad i, j = 1, ..., n.$$
 (1)

Obviously the functions p_i , i = 1,..., n are linearly independent on X, so they form a basis of F_n . Thus the space $F_n \cdot F_n$ is spanned by the functions $p_i p_j$, i, j = 1,..., n. Consider now the following system of 2n - 1 functions in $F_n \cdot F_n$:

$$p_1 p_i, \quad j = 2,..., n; \qquad p_i^2, \quad i = 1,..., n.$$
 (2)

From (1) we have

$$\left(p_{1}\sum_{j=2}^{n}\alpha_{j}p_{j}+\sum_{i=1}^{n}\beta_{i}p_{i}^{2}\right)(x_{i})=\beta_{i}, \qquad l=1,...,n.$$
(3)

(3) and condition (*) for the space F_n imply that the equation

$$p_1 \sum_{j=2}^n \alpha_j p_j + \sum_{i=1}^n \beta_i p_i^2 = 0$$

holds only if $\alpha_j = 0$, j = 2,..., n; $\beta_i = 0$, i = 1,..., n. This means that the functions (2) are linearly independent on X and shows that $\dim(F_n \cdot F_n) \ge 2n-1$.

According to the necessary condition of the theorem, $\dim(F_n \cdot F_n) = 2n - 1$. Therefore the system of functions (2), forms a basis of $F_n \cdot F_n$. Consequently,

$$p_k p_l = p_1 \sum_{i=2}^n \alpha_{i1}^{(k,l)} p_i + \sum_{i=1}^n \beta_{i1}^{(k,l)} p_i^2, \qquad k, l = 1, ..., n.$$
(4)

But according to (1), for any $k \neq l$, $(p_k p_l)(x_j) = 0$, j = 1,..., n, which implies that in (4), $\beta_{i1}^{(k,l)} = 0$, i = 1,..., n, $k \neq l$. Thus we have

$$p_k p_l = p_1 \sum_{i=2}^n \alpha_{i1}^{(k,l)} p_i, \qquad k \neq l, \ k, l = 1, ..., n$$
(5)

and similarly

$$p_k p_s = p_1 \sum_{i=2}^n \alpha_{i1}^{(k,s)} p_i, \qquad k \neq s, \ k, s = 1, ..., n.$$

By virtue of (*) for the spaces $F_n \cdot F_n$ and F_n we obtain from the above two equalities that

$$p_{l} \sum_{i=2}^{n} \alpha_{i1}^{(k,s)} p_{i} - p_{s} \sum_{i=2}^{n} \alpha_{i1}^{(k,l)} p_{i} = 0,$$

 $s \neq k, \quad s \neq l, \quad k \neq l, \quad l, s, k = 1, ..., n$

Applying the last equality for $x = x_s$, gives

$$\alpha_{s1}^{(k,l)} = 0, \quad s = 2, ..., n, \quad s \neq k; \qquad s \neq l; \qquad k \neq l.$$

Consequently, (5) takes the form

$$p_k p_l = p_1(\alpha_{k1}^{(k,l)}p_k + \alpha_{l1}^{(k,l)}p_l), \qquad k \neq l, \ k, \ l = 1, ..., n.$$

Changing p_1 on p_s we finally obtain that the functions p_i must satisfy the following relationships:

$$p_k p_l = p_s(\alpha_{ks}^{(k,l)} p_k + \alpha_{ls}^{(k,l)} p_l), \qquad k \neq l, \ k, l, s = 1, ..., n.$$
(6)

It is important to notice that in (6) $\alpha_{kx}^{(k,l)} \neq 0$, $\alpha_{lx}^{(k,l)} \neq 0$, $s \neq k$, l, due to (*) for the space F_n . The relationship (6) will serve as the main tool for proving the necessity of the conditions of the theorem. Let one of the functions p_i , i = 1,..., n, say p_s , vanish at some point $x \in X$. Then we find from (6) that $(p_k p_l)(x) = 0$, $k \neq l$, k, l = 1,..., n. This means that a zero of one of the above n functions p_i is necessarily a zero of all but at most one of the remaining functions p_i . Due to this fact, all the functions $p_i p_j$, $i \neq j$, i, j = 1,..., n, vanish at the same points $x \in X$. Thus the set $X_1 = \{x \in X: (p_i p_j)(x) = 0\}$ is the same for all $i \neq j$, i, j = 1,..., n, and, consequently, $X \setminus X_1 = \{x \in X:$ $p_i(x) \neq 0, i = 1,..., n\}$. Now we find from (6) that

$$(\alpha_{ks}^{(k,l)}p_k + \alpha_{ls}^{(k,l)}p_l)(x) \neq 0, \qquad x \in X \setminus X_1, \ k \neq l, \ k, \ l, \ s = 1, ..., n.$$

(Observe that, by virtue of (*) for the space F_n , $X_1 \neq X$.) Accordingly, (6) implies, for fixed k, l, $k \neq l$, that

$$p_{s}(x) = \frac{p_{k} p_{l}}{\alpha_{ks}^{(k,l)} p_{k} + \alpha_{ls}^{(k,l)} p_{l}} (x), \qquad s = 1, ..., n, \ x \in X \setminus X_{1}$$

We have thus established that on the subset $X \setminus X_1$ the space F_n is spanned by the following *n* functions:

$$\frac{p_l}{d_s}, \qquad s=1,...,n \tag{7}$$

Here $\Delta_s = \alpha_{ks}^{(k,l)} + \alpha_{ls}^{(k,l)}q$, s = 1,...,n, $q = p_l/p_k$, and for $x \in X \setminus X_1$, $\infty \neq |q(x)| \neq 0$, $\Delta_l(x) = 1$, $\Delta_k(x) = q(x)$, $\Delta_s(x) \neq 0$, s = 1,...,n. Again applying (*) for the space F_n , we obtain from (6) that

$$\frac{\alpha_{ki}^{(k,l)}}{\alpha_{kj}^{(k,l)}} \neq \frac{\alpha_{li}^{(k,l)}}{\alpha_{lj}^{(k,l)}}, \qquad i \neq j, \ i, j = 1, ..., n, \ k \neq l.$$

In view of this, together with the fact that $\alpha_{ls}^{(k,l)} \neq 0$, s = 1,..., n, $s \neq k$, we find that $\prod_{s=1}^{n} \Delta_s$ is a polynomial in q of degree n-1, having n-1 distinct zeros. This allows us to conclude that any fraction of the form $(\prod_{s=1}^{n} \Delta_s)^{-1} q^{i-1}$, i = 1,..., n is a linear combination of the n fractions Δ_s^{-1} , s = 1,..., n, and it is obvious that the converse assertion is also true. So we obtain from (7) that the functions ωq^{i-1} , i = i,..., n, where $\omega = (\prod_{s=1}^{n} \Delta_s)^{-1} p_i$, span the space F_n on the subset $X \setminus X_1$. Summarizing the previous discussion, we find that the functions

$$g_{i}(x) = \begin{cases} (\omega q^{i-1})(x), & x \in X \setminus X_{1} \\ h_{i}(x), & x \in X_{1} \end{cases} \quad i = 1, ..., n$$
(8)

where each function h_i is a linear combination of the functions $p_1, ..., p_n$,

span the space F_n . Now consider $0 \neq P = p_1 p_2 \in F_n \cdot F_n$ and any $Q \in F_n \cdot F_n$, such that Q(x) = 0, $x \in X \setminus X_1$. Then PQ = 0, since $(p_1, p_2)(x) = 0$, $x \in X_1$. Thus the condition (*) for the space $F_n \cdot F_n$ implies that Q = 0. This means that 2n-1 basis functions (2) of the space $F_n \cdot F_n$ also constitute a basis of this space on the subset $X \setminus X_1$. But, according to (8), the space $F_n \cdot F_n$ on $X \setminus X_1$ is spanned by 2n-1 functions ωq^{i-1} , i=1,...,2n-1. Thus we deduce that the functions ωq^{i-1} , i = 1, ..., 2n-1 are linearly independent on $X \setminus X_1$. Now we determine the form of the functions h_i , i = 1,..., n in (8). From (8) we see that, for any fixed s, $2 \le s \le 2n$, the functions $g_i g_j$, i, j =1, 2,..., n, i + j = s, coincide on the subset $X \setminus X_1$: $(g_i g_j)(x) = (\omega^2 q^{s-2})(x)$, $x \in X \setminus X_1$. Furthermore, the function $\omega^2 q^{s-2}$ is not identically zero on $X \setminus X_1$, since it is one of the basis functions of the space $F_n \cdot F_n$ on this set. Hence, for any given s, $2 \le s \le 2n$, the functions $h_i h_j$, i, j = i, ..., n, i + j = s, must coincide on X_1 , since otherwise at least two of the functions $g_i g_j$, i, j = 1, ..., n, i + j = s, will be linearly independent on X, and, consequently, $\dim(F_n \cdot F_n) > 2n - 1$. From the previously established relationships between the functions $h_i h_i$ it is easy to see that a zero of one of the n functions h_i , i = 1, ..., n is necessarily a zero of all other functions h_i with the possible exception of one of the two functions h_1 and h_n . Thus, at the points $x \in X_1$ where $h_1(x) \neq 0$, the functions h_i , i = 1, ..., n are of the form stated in the theorem, with $\omega = h_1$ and $q = h_2/h_1$, and at all other points $x \in X_1$ (if such points exist) $h_i(x) = 0$, i = 1, ..., n - 1. Now consider these latter points $x \in X_1$. We can define $\omega(x) = 0$, q(x) = 0, if $h_n(x) = 0$. Otherwise the functions q and ω can be defined at the above points according to condition (i) of the theorem.

Thus we have proved the existence of a basis of the space F_n formed by functions of the form ωq^{i-1} , i=i,...,n. The necessity of the other part of condition (i) concerning the functions q and ω follows immediately from the assumed boundness of the functions f_i , i = 1, ..., n, spanning F_n . Next we will show that condition (ii) of the theorem is a consequence of condition (*) for the space $F_n \cdot F_n$. We divide the set X into three disjoint subsets: $X_{01} = \{ x \in X: \ \omega(x) = 0, \ |q(x)| \neq \infty \}, \ X_{02} = \{ x \in X: \ \omega(x) = 0, \ |q(x)| = \infty \}$ and $X \setminus X_0 = \{x \in X : \omega(x) \neq 0\}$, where $X_0 = X_{01} \cup X_{02}$. Let the function q take only s distinct values, $q_1, ..., q_s$, on the set $X \setminus X_0$, where, according to condition (i), $|q_i| < \infty$, i = 1, ..., s. Consider $P = \omega^2 \prod_{i=1}^{\lfloor s/2 \rfloor} (q - q_i)$ and Q = $\omega^2 \prod_{i=1}^{s} (q-q_i)$, where ω and q satisfy condition (i) of the theorem and [\cdot] denotes the integer part of a number. If the set X_{02} is empty then, for s < 4n - 3, $P, Q \in F_n \cdot F_n$, and PQ = 0. However, $P \neq 0$ and $Q \neq 0$ since $\omega(x) \neq 0, x \in X \setminus X_0$. In the case where the set X_{02} is not empty the same is true for s < 4n - 4, since in this case the polynomial P is of degree less than 2n-2, so that due to (i)(*), P(x) = 0, $x \in X_{02}$. Hence, in both cases condition (*) fails for the space $F_n \cdot F_n$. This completes the proof of the theorem.

Remarks. (i) Condition (*) cannot be eliminated. Let $X = Y_1 \cup Y_2$, where $Y_1 \cap Y_2 = \emptyset$ and let f_i be a characteristic function of the set Y_i , i = 1, 2. Then dim $(F_2 \cdot F_2) = 2 < 3$, since $f_1 f_2 = 0$.

(ii) If condition (*) holds for F_n it does not necessarily hold for $F_n cdot F_n$. For example, let X consist of 2n-1 distinct points x_j , j = 1,..., 2n-1 and $f_i(x) = x^{i-1}$, i = 1,..., n. Then $\sum_{i=1}^n \alpha_i f_i cdot \sum_{i=1}^n \beta_i f_i = 0$ implies that one of the two polynomials on the left-hand side has more than n-1 distinct zeros, and consequently, it is zero. This means that in the considered case F_n has no zero divisor. On the other hand, $F_n cdot F_n$ is spanned by the functions x^{i-1} , i = 1,..., 2n-1. Thus, taking, e.g., $P = (x - x_1) \cdots (x - x_{2n-2}) \in F_n cdot F_n$ and $Q = x - x_{2n-1} \in F_n cdot F_n$ we see that PQ = 0, while $P \neq 0, Q \neq 0$.

(iii) The theorem is valid also for the case when F_n is a linear space spanned by complex valued functions over a field of complex numbers.

3

The following corollary generalizing the result of [1] can be easily obtained from the theorem:

COROLLARY. In the above notation, let X contain at least 4n - 3 distinct points. Then the space $F_n \cdot F_n$ is spanned by 2n - 1 functions, forming a Chebyshev system of minimal degree 2n - 1 on X if and only if there exists in F_n a basis formed by the functions of the form ωq^{i-1} , i = 1,..., n, where q is such that $q(x) \neq q(y)$, $x \neq y$, x, $y \in X$ and $\omega(x) \neq 0$, $x \in X$.

Proof. The sufficiency is obvious. For proving the necessity show first that under the assumptions of the corollary the space $F_n \cdot F_n$ satisfies condition (*). Fix in the space $F_n \cdot F_n$ a basis of 2n-1 functions forming a Chebyshev system of degree 2n-1, and let P, Q be any two polynomials in $F_n \cdot F_n$ (with respect to the above basis), such that PQ = 0. Since the set X contains more than 4n-4 distinct points, one of the above two polynomials has more than 2n-2 distinct zeros, and, consequently, it equals zero, due to the assumed Chebyshev property of the basis functions of $F_n \cdot F_n$. Hence, all conditions of the theorem are fulfilled, which implies the existence in F_n a basis formed by the functions of the form ωq^{i-1} , i = 1, ..., n. Due to the Chebyshev property of these functions, the functions ω and q must be as in the corollary.

In conclusion, we present two examples of linear spaces of functions F_n , generating a linear space $F_n \cdot F_n$ of minimal dimension.

EXAMPLE 1. The system of rational functions. Let $f_i = (x - \alpha_i)^{-1}$, $x \in$

 $[a, b], \alpha_i \notin [a, b], i = 1, ..., n$. Denote $\omega(x) = \prod_{i=1}^n (x - \alpha_i)^{-1}$. Then we find that F_n is spanned by the functions ωx^{i-1} , i = 1, ..., n.

EXAMPLE 2. The system of trigonometric functions: 1, sin x, $\cos x,..., \sin mx$, $\cos mx$, $x \in R$, *m* is a fixed integer. Since $\sin kx = (e^{ikx} + e^{-ikx})/2i$, $\cos kx = (e^{ikx} + e^{-ikx})/2$, k = 1, 2,..., m, we immediately obtain that in the case considered, F_n , n = 2m + 1, is spanned by the functions e^{-ikx} , k = -m, -m + 1,..., m. See Remark (iii).

ACKNOWLEDGMENTS

The work on this paper was stimulated by discussions with the late Professor E. G. Strauss and with Professor E. Passow.

REFERENCES

- 1. B. L. GRANOVSKY AND E. PASSOW, Chebyshev systems of minimal degree, SIAM J. Math. Anal. 15 (1984), 166–169.
- 2. S. KARLIN AND W. J. STUDDEN, Tchebycheff systems: with applications in analysis and statistics, Interscience, New York, 1966.